Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Control Release ; 358: 128-141, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303394

ABSTRACT

Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 µm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 µm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Powders , SARS-CoV-2 , Respiratory Aerosols and Droplets , Administration, Inhalation , Particle Size , Dry Powder Inhalers
2.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: covidwho-2253490

ABSTRACT

The emergence of new immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and subvariants outpaces the development of vaccines specific against the dominant circulating strains. In terms of the only accepted immune correlate of protection, the inactivated whole-virion vaccine using wild-type SARS-CoV-2 spike induces a much lower serum neutralizing antibody titre against the Omicron subvariants. Since the inactivated vaccine given intramuscularly is one of the most commonly used coronavirus disease 2019 (COVID-19) vaccines in developing regions, we tested the hypothesis that intranasal boosting after intramuscular priming would provide a broader level of protection. Here, we showed that one or two intranasal boosts with the Fc-linked trimeric spike receptor-binding domain from wild-type SARS-CoV-2 can induce significantly higher serum neutralizing antibodies against wild-type SARS-CoV-2 and the Omicron subvariants, including BA.5.2 and XBB.1, with a lower titre in the bronchoalveolar lavage of vaccinated Balb/c mice than vaccination with four intramuscular doses of inactivated whole virion vaccine. The intranasally vaccinated K18-hACE2-transgenic mice also had a significantly lower nasal turbinate viral load, suggesting a better protection of the upper airway, which is the predilected site of infection by Omicron subvariants. This intramuscular priming and intranasal boosting approach that achieves broader cross-protection against Omicron variants and subvariants may lengthen the interval required for changing the vaccine immunogen from months to years.


Subject(s)
COVID-19 , Turbinates , Mice , Animals , SARS-CoV-2/genetics , Viral Load , COVID-19/prevention & control , Mice, Transgenic , Antibodies, Neutralizing , COVID-19 Vaccines , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
3.
Cell Rep Med ; 3(9): 100743, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2254238

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 was a dominant circulating SARS-CoV-2 variant worldwide. Recent reports hint that BA.2 is similarly potent regarding antibody evasion but may be more transmissible than BA.1. The pathogenicity of BA.2 remains unclear and is of critical public health significance. Here we investigated the virological features and pathogenicity of BA.2 with in vitro and in vivo models. We show that BA.2 is less dependent on transmembrane protease serine 2 (TMPRSS2) for virus entry in comparison with BA.1 in vitro. In K18-hACE2 mice, BA.2 replicates more efficiently than BA.1 in the nasal turbinates and replicates marginally less efficiently in the lungs, leading to decreased body weight loss and improved survival. Our study indicates that BA.2 is similarly attenuated in lungs compared with BA.1 but is potentially more transmissible because of its better replication at the nasal turbinates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , SARS-CoV-2/genetics , Serine , Virulence
4.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2050073

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
5.
Emerg Microbes Infect ; 11(1): 2093-2101, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978182

ABSTRACT

The replication and pathogenicity of SARS-CoV-2 Omicron BA.2 are comparable to that of BA.1 in experimental animal models. However, BA.2 has rapidly emerged to overtake BA.1 to become the predominant circulating SARS-CoV-2 variant worldwide. Here, we compared the replication fitness of BA.1 and BA.2 in cell culture and in the Syrian hamster model of COVID-19. Using a reverse genetics approach, we found that the BA.1-specific spike mutation G496S compromises its replication fitness, which may contribute to BA.1 being outcompeted by BA.2 in the real world. Additionally, the BA.1-unique G496S substitution confers differentiated sensitivity to therapeutic monoclonal antibodies, which partially recapitulates the immunoevasive phenotype of BA.1 and BA.2. In summary, our study identified G496S as an important determinant during the evolutionary trajectory of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Cricetinae , Humans , Mesocricetus , Mutation, Missense , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: covidwho-1972633

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
7.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: covidwho-1954694

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
8.
Int J Biol Sci ; 18(12): 4781-4791, 2022.
Article in English | MEDLINE | ID: covidwho-1954684

ABSTRACT

Rapid development and successful use of vaccines against SARS-CoV-2 might hold the key to curb the ongoing pandemic of COVID-19. Emergence of vaccine-evasive SARS-CoV-2 variants of concern (VOCs) has posed a new challenge to vaccine design and development. One urgent need is to determine what types of variant-specific and bivalent vaccines should be developed. Here, we compared homotypic and heterotypic protection against SARS-CoV-2 infection of hamsters with monovalent and bivalent whole-virion inactivated vaccines derived from representative VOCs. In addition to the ancestral SARS-CoV-2 Wuhan strain, Delta (B.1.617.2; δ) and Theta (P.3; θ) variants were used in vaccine preparation. Additional VOCs including Omicron (B.1.1.529) and Alpha (B.1.1.7) variants were employed in the challenge experiment. Consistent with previous findings, Omicron variant exhibited the highest degree of immune evasion, rendering all different forms of inactivated vaccines substantially less efficacious. Notably, monovalent and bivalent Delta variant-specific inactivated vaccines provided optimal protection against challenge with Delta variant. Yet, some cross-variant protection against Omicron and Alpha variants was seen with all monovalent and bivalent inactivated vaccines tested. Taken together, our findings support the notion that an optimal next-generation inactivated vaccine against SARS-CoV-2 should contain the predominant VOC in circulation. Further investigations are underway to test whether a bivalent vaccine for Delta and Omicron variants can serve this purpose.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , SARS-CoV-2 , Vaccines, Combined , Vaccines, Inactivated
10.
Science ; 377(6604): 428-433, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1901908

ABSTRACT

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/transmission , Disease Models, Animal , Mesocricetus , SARS-CoV-2/pathogenicity , Virulence
11.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Outbreaks , Female , Hong Kong/epidemiology , Humans , Mammals , RNA, Viral/genetics , SARS-CoV-2/genetics
12.
Nat Commun ; 13(1): 2539, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1830055

ABSTRACT

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterize the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. Moreover, we show that the bone loss is associated with SARS-CoV-2-induced cytokine dysregulation, as the circulating pro-inflammatory cytokines not only upregulate osteoclastic differentiation in bone tissues, but also trigger an amplified pro-inflammatory cascade in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


Subject(s)
COVID-19 , Animals , COVID-19/complications , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2
13.
Cell Mol Immunol ; 19(5): 588-601, 2022 05.
Article in English | MEDLINE | ID: covidwho-1830046

ABSTRACT

Live attenuated vaccines might elicit mucosal and sterilizing immunity against SARS-CoV-2 that the existing mRNA, adenoviral vector and inactivated vaccines fail to induce. Here, we describe a candidate live attenuated vaccine strain of SARS-CoV-2 in which the NSP16 gene, which encodes 2'-O-methyltransferase, is catalytically disrupted by a point mutation. This virus, designated d16, was severely attenuated in hamsters and transgenic mice, causing only asymptomatic and nonpathogenic infection. A single dose of d16 administered intranasally resulted in sterilizing immunity in both the upper and lower respiratory tracts of hamsters, thus preventing viral spread in a contact-based transmission model. It also robustly stimulated humoral and cell-mediated immune responses, thus conferring full protection against lethal challenge with SARS-CoV-2 in a transgenic mouse model. The neutralizing antibodies elicited by d16 effectively cross-reacted with several SARS-CoV-2 variants. Secretory immunoglobulin A was detected in the blood and nasal wash of vaccinated mice. Our work provides proof-of-principle evidence for harnessing NSP16-deficient SARS-CoV-2 for the development of live attenuated vaccines and paves the way for further preclinical studies of d16 as a prototypic vaccine strain, to which new features might be introduced to improve safety, transmissibility, immunogenicity and efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Mice , Mice, Transgenic , Spike Glycoprotein, Coronavirus , Vaccines, Attenuated/genetics
14.
Chemical science ; 13(11):3216-3226, 2022.
Article in English | EuropePMC | ID: covidwho-1782305

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.

15.
Protein Cell ; 13(12): 940-953, 2022 12.
Article in English | MEDLINE | ID: covidwho-1777863

ABSTRACT

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Subject(s)
Coronavirus Papain-Like Proteases , SARS-CoV-2 , Animals , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Cricetinae , Humans , Mice , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
16.
Chem Sci ; 13(11): 3216-3226, 2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1764224

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases.

17.
Cell Discov ; 7(1): 100, 2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1493085

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is predominantly a respiratory tract infection that significantly rewires the host metabolism. Here, we monitored a cohort of COVID-19 patients' plasma lipidome over the disease course and identified triacylglycerol (TG) as the dominant lipid class present in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced metabolic dysregulation. In particular, we pinpointed the lipid droplet (LD)-formation enzyme diacylglycerol acyltransferase (DGAT) and the LD stabilizer adipocyte differentiation-related protein (ADRP) to be essential host factors for SARS-CoV-2 replication. Mechanistically, viral nucleo capsid protein drives DGAT1/2 gene expression to facilitate LD formation and associates with ADRP on the LD surface to complete the viral replication cycle. DGAT gene depletion reduces SARS-CoV-2 protein synthesis without compromising viral genome replication/transcription. Importantly, a cheap and orally available DGAT inhibitor, xanthohumol, was found to suppress SARS-CoV-2 replication and the associated pulmonary inflammation in a hamster model. Our findings not only uncovered the mechanistic role of SARS-CoV-2 nucleocapsid protein to exploit LDs-oriented network for heightened metabolic demand, but also the potential to target the LDs-synthetase DGAT and LDs-stabilizer ADRP for COVID-19 treatment.

18.
Clin Infect Dis ; 75(1): e1101-e1111, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1429186

ABSTRACT

BACKGROUND: The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS: We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/ß-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/ß-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS: This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.


Subject(s)
COVID-19 , Actins , Animals , Antibodies, Neutralizing , Cricetinae , Disease Models, Animal , Humans , Lung , Mesocricetus , SARS-CoV-2 , Temperature
19.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Article in English | MEDLINE | ID: covidwho-1206436

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Caco-2 Cells , Chlorocebus aethiops , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/chemistry , Vero Cells
20.
Clin Infect Dis ; 71(16): 2139-2149, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153181

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be mostly transmitted by medium- to large-sized respiratory droplets, although airborne transmission may be possible in healthcare settings involving aerosol-generating procedures. Exposure to respiratory droplets can theoretically be reduced by surgical mask usage. However, there is a lack of experimental evidence supporting surgical mask usage for prevention of COVID-19. METHODS: We used a well-established golden Syrian hamster SARS-CoV-2 model. We placed SARS-CoV-2-challenged index hamsters and naive hamsters into closed system units each comprising 2 different cages separated by a polyvinyl chloride air porous partition with unidirectional airflow within the isolator. The effect of a surgical mask partition placed between the cages was investigated. Besides clinical scoring, hamster specimens were tested for viral load, histopathology, and viral nucleocapsid antigen expression. RESULTS: Noncontact transmission was found in 66.7% (10/15) of exposed naive hamsters. Surgical mask partition for challenged index or naive hamsters significantly reduced transmission to 25% (6/24, P = .018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7% (2/12, P = .019) of exposed naive hamsters. Unlike the severe manifestations of challenged hamsters, infected naive hamsters had lower clinical scores, milder histopathological changes, and lower viral nucleocapsid antigen expression in respiratory tract tissues. CONCLUSIONS: SARS-CoV-2 could be transmitted by respiratory droplets or airborne droplet nuclei which could be reduced by surgical mask partition in the hamster model. This is the first in vivo experimental evidence to support the possible benefit of surgical mask in prevention of COVID-19 transmission, especially when masks were worn by infected individuals.


Subject(s)
COVID-19/transmission , Masks , SARS-CoV-2/pathogenicity , Animals , Coronavirus/pathogenicity , Cricetinae , Female , Male , Pandemics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL